.. _Theory: ########################### Theoretical Background ########################### The Perdew-Zunger self-interaction correction (`PZSIC`_) is a computationally demanding task. The FLOSIC method attempts to alleviate this computational complexity by parametrizing canonical (KS) orbitals into Fermi orbitals (FOs), .. math:: F_{i \sigma}(\vec{r})=\frac{\sum_\alpha \psi_{\alpha \sigma}^*\left(\vec{a}_{i \sigma}\right) \psi_{\alpha \sigma}(\vec{r})}{\sqrt{\sum_\alpha\left|\psi_{\alpha \sigma}\left(\vec{a}_{i \sigma}\right)\right|^2}} . where the :math:`\vec{a}_{i \sigma}` are the Fermi-orbital descriptors (FODs). The optimal positions are found by minimizing the FOD forces, .. math:: \frac{d E^{S I C}}{d a_m}=\sum_{k l} \varepsilon_{k l}^k\left\{\left\langle\frac{d \phi_k}{d a_m} \mid \phi_l\right\rangle-\left\langle\frac{d \phi_l}{d a_m} \mid \phi_k\right\rangle\right\} . You can check this paper to learn more about `FO derivatives`_ .. _PZSIC: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.23.5048 .. _FO derivatives: https://pubmed.ncbi.nlm.nih.gov/25681892/